\(\int\limits_0^{\pi/2}sin\, \text x\,\times sin\,2\text x\,d\text x
\)
= \(\int\limits_0^{\pi/2}sin\, \text x\,\times2\times sin\,\text x\,cos\,\text x\,d\text x
\)
⇒ \(\int\limits_0^{\pi/2}sin\, \text x\,\times sin\,(2\text x)\,d\text x
\) = 2\(\int\limits_0^{\pi/2}
\)(1 - cos2 x) cos x dx

First let us find,

Let sin x = t. Hence, cos x dx = dt. For second expression,

⇒ \(\int\limits_0^{\pi/2}
\) sin x \(\times\)sin(2x) dx = \(\Big(\cfrac23\Big)\)