Given:
The difference between outside and inside surface areas of cylindrical metallic pipe 14 cm long is 44 m2 and the pipe is made of 99 cm3 of metal.
To find:
the outer and inner radii of the pipe.
Solution:

Let the inner radius of pipe = r1
And the radius of outer cylinder = r2
Length of cylinder (h) = 14 cm
Surface area of hollow cylinder =2πh (r2 – r1)
Given surface area of cylinder = 44 m2.
⇒ 2π h(r2 –r1) = 44
⇒ 2π (14) (r2 –r1) = 44
⇒ (r2 – r1) = \(\frac{44}{28π}\)

⇒ (r2 –r1) = 1/2 ……. (1)
Given volume of a hollow cylinder = 99 cm3
Volume of a hollow cylinder = π h(r22 - r12 )
⇒ π h (r22 - r12) = 99
⇒ 14π (r22 - r12) = 99
Apply the formula a2 - b2 = ( a - b ) ( a + b ) in (r22 - r12).
⇒ 14π (r2 + r1) (r2 – r1) = 99
Put the value of r2 - r1 from (1).
⇒ 14π (r2 + r1) \(\frac{1}2\) = 99

⇒ (r2 + r1) = \(\frac{9}2\)……………… (2)
Equating (1) & (2) equations we get
r2 = \(\frac{5}2\) cm
Substituting r2 value in (1)
= \(\frac{5}2\) - r1 = \(\frac{1}2\)
⇒ \(\frac{5}2\) - \(\frac{1}2\) = r1
⇒ r1 = \(\frac{5 - 1}2\)
⇒ r1 = \(\frac{4}2\)
⇒ r1 = 2 cm
∴ Inner radius of pipe (r1) = 2 cm
Radius of outer cylinder (r2) = \(\frac{5}2\) cm