Given: cos A = \(\frac{7}{25}\)
To find: tan A + cot A
∵ sin2 A + cos2A = 1
⇒ sin2A = 1 – cos2A
⇒ sin A = \(\sqrt{1 – cos^2A}\)
= \(\sqrt{1-\Big(\frac{7}{25}\big)^2}\) = \(\sqrt{1-\frac{49}{625}}\)
= \(\sqrt{\frac{625-49}{625}}\) = \(\sqrt{\frac{576}{625}}\) = \(\frac{24}{25}\)
Now, as tanA = \(\frac{sinA}{cosA}\) = \(\frac{24/25}{7/25}\) = \(\frac{24}{7}\)
And cotA = \(\frac{1}{tanA}\) = \(\frac{7}{24}\)
⇒ tanA + cotA = \(\frac{24}{7}\) + \(\frac{7}{24}\) = \(\frac{576+49}{168}\) = \(\frac{625}{168}\)