To find: (cosecθ – sinθ) (secθ – cosθ) (tanθ + cotθ)
∵ cosecθ = \(\frac{1}{sinθ},sec θ=\frac{1}{cos θ},tan θ\)
= \(\frac{sinθ}{cosθ},cotθ=\frac{cosθ}{sinθ}\)
∴ (cosecθ – sinθ) (secθ – cosθ) (tanθ + cotθ)

Now, as sin2θ + cos2θ = 1
⇒ sin2θ = 1 – cos2θ
And cos2θ = 1 – sin2θ

Hence the answer is 'B'