To find: (1 + tan θ + sec θ) (1 + cot θ − cosec θ)
Consider (1 + tan θ + sec θ) (1 + cot θ − cosec θ)

= \(\frac{(sinθ+cosθ)^2-1}{sinθcosθ}\) [∵ (a – b) (a + b) = a2 – b2]
= \(\frac{sin^2θ+cos^2θ+2sinθcosθ-1}{sinθcosθ}\)
= \(\frac{1+2sinθcosθ-1}{sinθcosθ}\) [∵ sin2θ + cos2θ = 1]
= \(\frac{2sinθcosθ}{sinθcosθ}\) = 2