Given: cosecθ = 2x
⇒ x = \(\frac{ cosec θ}{2}\)
⇒ x2 = \(\frac{ cosec^2θ}{4}\) .........(1)
And cotθ = \(\frac{2}{x}\)
⇒ x = \(\frac{2}{cotθ}\)
⇒ x2 = \(\frac{4}{cot^2θ}\)
⇒ \(\frac{1}{x^2}\) = \(\frac{cot^2θ}{4}\) .....(ii)
To find: \(2\Big(x^2-\frac{1}{x^2}\Big)\)
Consider \(2\Big(x^2-\frac{1}{x^2}\Big)\) = \(2\Big(\frac{cosec^2 θ}{4}-\frac{1}{x^2}\Big)\) [Using (i)]
= \(2\Big(\frac{cosec^2 θ}{4}-\frac{cot^2 θ}{4}\Big)\) [Using (ii)]
= \(2\Big(\frac{cosec^2 θ-cot^2 θ}{4}\Big)\) = \(\frac{1}{2}\) (cosec2θ – cot2θ)
Now, as 1 + cot2θ = cosec2θ
⇒ 1 = cosec2 θ – cot2 θ
⇒ \(2\Big(x^2-\frac{1}{x^2}\Big)\) = \(\frac{1}{2}\) (cosec2θ – cot2θ) = \(\frac{1}{2}\)