Given: secθ + tanθ = x …(i)
To find: secθ
We know that 1 + tan2θ = sec2θ
⇒ sec2θ – tan2θ = 1
∵ a2 – b2 = (a – b) (a + b)
∴ sec2θ – tan2θ = (secθ – tanθ) (secθ + tanθ) = 1
⇒ From (i), we have
⇒ (secθ – tanθ) x = 1
⇒ secθ – tanθ = \(\frac{1}{x}\) ...…(ii)
Adding (i) and (ii), we get
secθ + secθ = \(X+\frac{1}{X}\)
⇒ secθ = \(\frac{X^2+1}{2X}\)
⇒ secθ = \(\frac{X^2+1}{2X}\)