Let the angles of the triangle be (a – d) °, a° and (a + d)°.
We know that the sum of angles of triangle is 180°.
⇒ a – d + a + a + d = 180°
⇒ 3a = 180°
∴ a = 60°
Given greatest angle = 5 × least angle
\(\frac{Greatest\,angle}{least\,angle}\) = 5

⇒ 60 + d = 300 – 5d
⇒ 6d = 240
∴ d = 40
Hence, angles are:
⇒ (a – d) ° = 60° – 40° = 20°
⇒ a° = 60°
⇒ (a + d) ° = 60° + 40° = 100°
∴ Angles of triangle in radians:
