Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
3.8k views
in Trigonometry by (32.2k points)
closed by

Solve the following equations : 

sin x + sin 5x = sin 3x

1 Answer

+1 vote
by (32.3k points)
selected by
 
Best answer

Ideas required to solve the problem: 

The general solution of any trigonometric equation is given as – 

• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z. 

• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. 

• tan x = tan y, implies x = nπ + y, where n ∈ Z. 

Given, 

sin x  sin 5x = sin 3x

To solve the equation we need to change its form so that we can equate the t-ratios individually. 

For this we will be applying transformation formulae. While applying the Transformation formula we need to select the terms wisely which we want to transform. 

As, 

sin x + sin 5x = sinx

∴ sin x + sin 5x – sin 3x = 0

∴ we will use sin x and cos 5x for transformation as after transformation it will give sin 3x term which can be taken common. 

{∵ sin A + sin B = 2 sin \((\frac{A+B}2)\) cos \((\frac{A-B}2)\)]

⇒ - sin 3x + 2 sin \((\frac{5x+x}2)\) cos \(\frac{5x-x}2\) = 0

⇒ 2sin 3x cos 2x – sin 3x = 0 

⇒ sin 3x ( 2cos 2x – 1) = 0 

∴ either, sin 3x = 0 or 2cos 2x – 1 = 0 

⇒ sin 3x = sin 0 or cos 2x = \(\frac{1}{2}\) = cos \(\frac{π}3\)

If sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z. 

If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. 

Comparing obtained equation with standard equation, we have:

3x = nπ or 2x = 2mπ ± \(\frac{π}3\)

∴ x = \(\frac{nπ}3\) or x = mπ ± \(\frac{π}6\)where m,n ϵ Z ..ans

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...