Given complex number is z = \(\frac{1-i}{1+i}\)

We know that the polar form of a complex number Z=x+iy is given by Z=|Z|(cosθ+isinθ)
Where,
|Z|=modulus of complex number= \(\sqrt{x^2+y^2}\)
θ =arg(z)=argument of complex number= tan-1 \(\Big(\frac{|y|}{|x|}\Big)\)
Now for the given problem,
⇒ |z| = \(\sqrt{{0}^2+(1)^2}\)
⇒ |z| = \(\sqrt{0+1}\)
⇒ |z| = \(\sqrt{1}\)
⇒ |z|=1
⇒ θ = tan-1\(\Big(\frac{1}{0}\Big)\)
Since x>0,y>0 complex number lies in 1st quadrant and the value of θ will be as follows 0°≤θ≤90°.
⇒ θ = tan-1(∞)
⇒ θ = \(\frac{-\pi}{2}\)
⇒ z = \({1}\Big(cos\Big(\frac{-\pi}{2}\Big) + isin\Big(\frac{-\pi}{2}\Big)\Big)\)
⇒ z = \({1}\Big(cos\Big(\frac{\pi}{2}\Big) - isin\Big(\frac{\pi}{2}\Big)\Big)\)
∴ The Polar form of Z=\(\frac{(1-i)}{(1+i)}\) is z =\({1}\Big(cos\Big(\frac{\pi}{2}\Big) - isin\Big(\frac{\pi}{2}\Big)\Big)\)