Given complex number is z = \(\frac{-16}{1+i\sqrt{3}}\)

We know that the polar form of a complex number Z=x+iy is given by Z=|Z|(cosθ+isinθ)
Where,
|Z|=modulus of complex number= \(\sqrt{x^2+y^2}\)
θ =arg(z)=argument of complex number= tan-1 \(\Big(\frac{|y|}{|x|}\Big)\)
Now for the given problem,
⇒ |z| = \(\sqrt{(-4)^2+(4\sqrt{3})^2}\)
⇒ |z| = \(\sqrt{16+48}\)
⇒ |z| = \({\sqrt{64}}\)
⇒ |z|= 8
⇒ θ =tan-1 \(\Big(\frac{4\sqrt{3}}{4}\Big)\)
Since x>0,y>0 complex number lies in 2nd quadrant and the value of θ will be as follows 90°≤θ≤180°.
⇒ θ = tan-1\((\sqrt{3})\)
⇒ θ = \(\frac{2\pi}{3}\)
⇒ z = \(8\Big(cos\Big(\frac{2\pi}{3}\Big) + isin\Big(\frac{2\pi}{3}\Big)\Big)\)
∴ The Polar form of z = \(\frac{-16}{1+i\sqrt{3}}\) is z = \(8\Big(cos\Big(\frac{2\pi}{3}\Big) + isin\Big(\frac{2\pi}{3}\Big)\Big)\)