Given Complex number is Z=(i25)3
⇒ Z=i75
⇒ Z=i74.i
⇒ Z=(i2)37.i
We know that i2=-1
⇒ Z=(-1)37.i
⇒ Z=(-1).i
⇒ Z=-i
⇒ Z=0-i
We know that the polar form of a complex number Z=x+iy is given by Z=|Z|(cosθ+isinθ)
Where, |Z|=modulus of complex number= \(\sqrt{x^2+y^2}\)
θ =arg(z)=argument of complex number= tan-1\(\Big(\frac{|y|}{|x|}\Big)\)
Now for the given problem,

Since x>0,y<0 complex number lies in 4th quadrant and the value of θ will be as follows -90 °≤θ≤0°.
