p(x) = (3x3 – 10x2 – 27x + 10)
p(5) = (3 × 53 – 10 × 52 – 27 × 5 + 10) = (375 – 250 – 135 + 10) = 0
p(–2) = [3 × (–23) – 10 × (–22) – 27 × (–2) + 10] = (–24 – 40 + 54 + 10) = 0
p \((\frac{1}3)\) = \(\{\) 3 x \((\frac{1}3)^3\) - 10 x \((\frac{1}3)^2\) - 27 x \(\frac{1}3\) + 10 \(\}\) = ( 3 x \(\frac{1}{27}\) - 10 x \(\frac{1}9\) - 9 + 10)
= \((\frac{1}9-\frac{10}9+1)\) = \((\frac{1-10-9}9)\) = \((\frac{0}9)\) = 0
∴ 5, –2 and \(\frac{1}3\) are the zeroes of p(x).
Let α = 5, β = –2 and γ = \(\frac{1}3\). Then we have:
(α +β + γ) = (5 − 2 + \(\frac{1}3\)) = \(\frac{10}3\) = \(\frac{-(coefficient\,of\,x^2)}{(coefficient\,of\,x^3)}\)
(αβ +βγ + γα) = (– 10 – \(\frac{2}3\) + \(\frac{5}3\)) = \(\frac{-27}3\) = \(\frac{coefficient\,of\,x}{coefficient\,of\,x^3}\)
αβγ = \(\{\) 5 x (-2) x \(\frac{1}3\)\(\}\) = \(\frac{-10}3\) = \(\frac{-(constant\,term)}{(coefficient\,of\,x^3)}\)