Given cubic polynomial
p(x) = x3 + 3x2 – x – 3
Comparing the given polynomial with ax3 + bx2 + cx + d, we get a = 1, b = 3, c = -1, d = -3
Futher given zeroes are 1,-1 and – 3
p(1) = (1)3 + 3(1)2 – 1 – 3
= 1 + 3 – 1 – 3 = 0
p(-1) = (-1)3 + 3(-1)2 – 1 – 3
= -1 + 3 + 1 – 3 = 0
p(-3) = (-3)3 + 3(-3)2 – (-3) – 3
= -27 + 27 + 3 – 3 = 0
Therefore, 1, -1 and -3 are the zeroes of x3 + 3x2 – x – 3.
So, we take α = 1, β = -1 and γ = -3
Now, α + β + γ = 1 + (-1) + (-3) = -3
αβ + βγ + γα = 1(-l) + (-1) (-3) + (-3)1
= -1 + 3 – 3
= -1 = c/a = -1/1 = -1
αβγ = 1 (-1) (-3) = 3 = -d/a = -(-3)/1 = 3