Let p(n): 12 + 22 + 32 + n2
Put n = 1 ⇒ p(1) = 1 > \(\frac{1}{3}\) which is true.
Assuming that true for p(k)
p(k): 12 + 22 + 33 +……….+ k2 > \(\frac{k^3}{3}\)
Let p(k + 1): 12 + 22 + 32 +…….+ k2 + (k + 1)2 > + \(\frac{k^3}{3}\)(k + 1)2

Hence by using the principle of mathematical induction true for all n ∈ N.