\(1+ \frac{1}{(1+2)} + \frac{1}{(1+2+3)}\) + ........ + \(\frac{1}{(1+2+3+...+n)}\) = \(\frac{2n}{n+1}\)
Put n = 1
p(1) = 1 + \(\frac{2}{(1+1)} = I \) which is true
Assuming that true for p(k)
p(k): \(1+ \frac{1}{(1+2)} + \frac{1}{(1+2+3)}\) + ...... + \(\frac{1}{(1+2+3+...+k)}\)
= \(\frac{2k}{(k+1)}\).
Let p(k + 1):

Hence by using the principle of mathematical induction true for all n ∈ N.