Let the numbers be \(\frac{a}{r}\), a, ar, the given;
\(\frac{a}{r} \times a \times ar = 1728\)
\(\Rightarrow\) a3 = 1728
\(\Rightarrow\)a = 12
\(\frac{12}{r}+12+12r\) = 38
\(\Rightarrow\) \(12(\frac{1}{r} + 1+r) =38\)
⇒ 6(1 + r + r2) = 19r
⇒ 6 + 6r + 6r2 = 19r
⇒ 6r2 – 13r + 6 = 0
⇒ 6r2 – 9r – 4r + 6 = 0
⇒ 3r(2r – 3) – 2(2r – 3) = 0
⇒ (3r – 2)(2r – 3) = 0
⇒ r = \(\frac{2}{3}, \frac{3}{2}\)
Therefore GP is 8, 12, 18 or 18, 12, 8.