Given that a and b are roots of x2 – 3x + p = 0
⇒ a + b = 3 and ab = p ...(i)
It is given that c and d are roots of x2 – 12x + q = 0
⇒ c + d = 12 and cd = q...(ii)
Also given that a, b, c, d are in G.P.
Let a, b, c, d be the first four terms of a G.P.
⇒ a = a, b = ar c = ar2d = ar3
Now,
∴a + b = 3
⇒ a + ar = 3
⇒ a(1 + r) = 3…(iii)
c + d = 12
⇒ ar2 + ar3 = 12
⇒ ar2(1 + r) = 12.....(iv)
From (iii) and (iv) we get
3.r2 = 12
⇒ r2 = 4
⇒ r = ±2
Substituting the value of r in (iii) we get a = 1
⇒ b = ar = 2
∴ c = ar2 = 22 = 4
d = ar3 = 23 = 8
⇒ ab = p = 2 and cd = 4×8 = 32
⇒ q + p = 32 + 2 = 34 and q−p = 32−2 = 30
⇒ q + p:q−p = 34:30 = 17:15
Hence, proved.