Let, z = -2i
Let 0 = r cosθ and -2 = r sinθ
By squaring and adding, we get
(0)2 + (-2)2 = (r cosθ)2 + (r sinθ)2
⇒ 0+4 = r2 (cos2θ + sin2θ)
⇒ 4 = r2
⇒ r = 2
∴ cosθ = 0 and sinθ = -1
Since, θ lies in fourth quadrant, we have
θ = -π/2
Since, θ ∈ (-π ,π ] it is principal argument.