To find: \(\lim\limits_{\text x \to 0}\cfrac{tan\,m\text x}{tan\,n\text x}\)
\(\lim\limits_{\text x \to 0}\cfrac{tan\,m\text x}{tan\,n\text x}\)
Multiplying and Dividing by mx in numerator & Multiplying and Dividing by nx in the denominator:

As, x → 0 ⇒ mx → 0 & nx → 0

Now, put mx = y and nx = t

Hence, the value of \(\lim\limits_{\text x \to 0}\cfrac{tan\,m\text x}{tan\,n\text x}\) = \(\cfrac{m}n\)