Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
+1 vote
13.6k views
in Mathematics by (15.4k points)

Let \(\vec P = 2\hat i + 3\hat j + \hat k\) and \(\vec q = \hat i + 2\hat j + \hat k\)  be two vectors. If a vector  \(\vec r = (\alpha \hat i + \beta \hat j + \gamma \hat k)\) is perpendicular to each of the vectors  \((\vec p + \vec q)\)  and \((\vec p - \vec q)\) , and | \(\vec r\) | \(\sqrt{3}\)  , then |α| + |β| + |γ| is equal to ____.

Please log in or register to answer this question.

1 Answer

+1 vote
by (15.9k points)

\(\vec P = 2\hat i + 3\hat j + \hat k\) (given)

\(\vec q = \hat i + 2\hat j + \hat k\)

Now \((\vec p + \vec q)\) x \((\vec p - \vec q)\) = \(\begin{vmatrix} \hat i & \hat j & \hat k \\[0.3em] 3 & 5 & 2 \\[0.3em] 1 & 1 & 0 \end{vmatrix}\)

= - 2\(\hat i\) - 2\(\hat j\) - 2\(\hat k\)

\(\vec r = \pm\)(- \(\hat i\) - \(\hat j\) - \(\hat k\))

According to question 

\(\vec r\) = α\(\hat i\) + β\(\hat j\) + γ\(\hat k\)

So |α| = 1, |β| = 1, |γ| = 1

\(\Rightarrow\) |α| + |β| + |γ| = 3

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...