\(\vec P = 2\hat i + 3\hat j + \hat k\) (given)
\(\vec q = \hat i + 2\hat j + \hat k\)
Now \((\vec p + \vec q)\) x \((\vec p - \vec q)\) = \(\begin{vmatrix}
\hat i & \hat j & \hat k \\[0.3em]
3 & 5 & 2 \\[0.3em]
1 & 1 & 0
\end{vmatrix}\)
= - 2\(\hat i\) - 2\(\hat j\) - 2\(\hat k\)

\(\vec r = \pm\)(- \(\hat i\) - \(\hat j\) - \(\hat k\))
According to question
\(\vec r\) = α\(\hat i\) + β\(\hat j\) + γ\(\hat k\)
So |α| = 1, |β| = 1, |γ| = 1
\(\Rightarrow\) |α| + |β| + |γ| = 3