Correct option is (4) 26
Let
\(\overrightarrow{a}_{11}=\) component of \(\overrightarrow{a}\) along \(\overrightarrow{b}\)
\(\overrightarrow{a}_{1}=\) component of \(\vec{a}\) perpendicular to \(\overrightarrow{b}\)
\(\overrightarrow{\mathrm{a}}_{11}=\frac{16}{11}(3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})\)
\(\overrightarrow{\mathrm{a}}_{1}=\frac{1}{11}(-4 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}-17 \hat{\mathrm{k}})\)
\(\because \overrightarrow{a}=\overrightarrow{a}_{11}+\overrightarrow{a}_{1}\)
\(\therefore \overrightarrow{\mathrm{a}}=\frac{16}{11}(3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})+\frac{1}{11}(-4 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}-17 \hat{\mathrm{k}})\)
\(=\frac{44}{11} \hat{\mathrm{i}}+\frac{11}{11} \hat{\mathrm{j}}-\frac{33}{11} \hat{\mathrm{k}}\)
\(\overrightarrow{\mathrm{a}}=4 \hat{\mathrm{i}}+\hat{\mathrm{j}}-3 \hat{\mathrm{k}}\)
\(\alpha=4 \quad \beta=1 \quad \gamma=-3\)
\(\alpha^{2}+\beta^{2}+\gamma^{2}=16+1+9=26\)