Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
119 views
in Mathematics by (70.6k points)
closed by
Evaluate the following limits:
`lim_(xrarr0)(sin^(2)mx)/(sin^(2)nx)`

1 Answer

0 votes
by (71.2k points)
selected by
 
Best answer
Correct Answer - `(m^(2))/(n^(2))`
`lim_(xto0)(sin^(2)mx)/(sin^(2)nx)=lim_(xto0){((sinmx)/(mx)xxmx.(sinmx)/(mx)xxmx)/((sinnx)/(nx)xxnx.(sinnx)/(nx)xxnx)}`
`=(m^(2))/(n^(2)).(lim_(xto0)((sinmx)/(mx).(sinmx)/(mx)))/(lim_(xto0)((sin)/(nx).(sinnx)/(nx)))=(m^(2))/(n^(2)).(lim_(xto0)(sinmx)/(mx).lim_(xto0)(sinmx)/(mx))/(lim_(xto0)(sinnx)/(nx).lim_(nto0)(sinnx)/(nx))`
`=((m^(2))/(n^(2))xx(1xx1)/(1xx1))=(m^(2))/(n^(2)).`

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...