किसी त्रिभुज ABC में सिद्ध कीजिए कि- (i) `a sin (B-C)+b sin (C-A)+c sin (A-B)=0`
(ii) `a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB)=0`
(iii) `(sinB)/(sinC)=(c-a cos B)/(b - a cos C)`
(iv) `a cos B - b cos A=(a^2-b^2)/(c)`
(v) `cos B -cos A=2((a-b)/(c))^2cos^2.(C)/(2)`
(vi) `(cos^2.(B-C)/(2))/((b+c)^2)+(sin^2.(B-C)/(2))/((b-c)^2)=(1)/(a^2)`
(vii) `((b^2-c^2)/(a^2))sin2A+((c^2-a^2)/(b^2))sin2B+((a^2-b^2)/(c^2))sin2C=0`