To prove sin2x = \(\frac{2tanx}{1+tan^2x}\)
Let us start from RHS and prove it equal to LHS.
RHS = \(\frac{2tanx}{1+tan^2x}\)
⇒\(\frac{2tanx}{sec^2x}\), as 1 + tan2x = sec2 x,identity
⇒ \(\frac{2\Big(\frac{sinx}{cosx}\Big)}{\frac{1}{cos^2x}}\)
⇒2sinxcosx = sin2x as per sin2x=2sinxcosx identity