In accordance with the problem, `beta_zlt0`
Thus `-(domega)/(dt)=ksqrtomega`, where k is proportionally constant
or, `-underset(omega_0)overset(omega)int(domega)/(sqrtomega)=kunderset0oversettintdt` or, `sqrt(omega)=sqrt(omega_0)-(kt)/(2)` (1)
When `omega=0`, total time of rotation `t=tau=(2sqrt(omega_0))/(k)`
Average angular velocity `lt omega gt =(int omega dt)/(int dt)=(underset(0)overset(2sqrt(omega_0)//k)int (omega_0+(k^2t^2)/(4)-ktsqrt(omega_0)dt))/(2sqrt(omega_0)//k)`
Hence `lt omega gt =[omega_0t+(k^2t^3)/(12)-k/2sqrt(omega_0)t^2]_0^(2sqrt(omega_0)//k)//2(sqrt(omega_0))/(k)=omega_0//3`