We have `vecomega=at veci+bt^2vecj` (1)
So, `omega=sqrt((at)^2+(bt^2)^2)`, thus, `omega|_(t=10s)=7.81 rad//s`
Differentiating Eq. (1) with respect to time
`vecbeta=(dvecomega)/(dt)=aveci+2btvecj` (2)
So, `beta=sqrt(a^2+(2bt)^2)`
and `beta|_(t=10s)=1*3rad//s^2`
(b) `cos alpha=(vecomega*vecbeta)/(omegabeta)=((atveci+bt^2vecj)*(aveci+2btvecj))/(sqrt((at)^2+(bt^2)^2)sqrt(a^2+(2bt)^2))`
Putting the values of (a) and (b) and taking `t=10s`, we get
`alpha=17^@`