Correct option is (C) 16

In \(\triangle ABC,\) QP || AB
\(\therefore\) \(\triangle CQP\sim\triangle CAB\)
\((\because\) Corresponding angles are equal as QP || AB)
\(\therefore\) \(\frac{CQ}{CA}=\frac{CP}{CB}\) ______________(1) (By properties of similar triangles)
Given that \(\frac{CQ}{QA}=\frac13\)
\(\Rightarrow QA=3CQ\)
\(\because CA=CQ+QA\)
\(=CQ+3CQ\)
\(=4CQ\)
\(\Rightarrow\) \(\frac{CQ}{CA}=\frac14\)
Then from (1), we obtain
\(\frac{CP}{BC}=\frac14\)
\(\Rightarrow BC=4CP\)
\(=4\times4=16\) \((\because CP=4)\)