(c) \(\frac{5π}{7}\)

Let ∠AQP = α
In ΔAQP, AQ = QP
⇒ ∠QAP = ∠QPA = \(\frac{1}{2}\) (π - α)
= \(\frac{π}{2}\) - \(\frac{α}{2}\)
∠PQB = π - α (AQB being a straight line)
In ΔPQB,
PQ = PB ⇒ ∠PBQ = ∠PQB = π - α
∴ ∠QPB = π - 2 (π - α) = 2α – π
In ΔABC,
∠BAC + ∠ABC + ∠ACB = π
⇒ ∠QPA + ∠ACB + ∠ACB = π
(∵ ∠QAP = ∠BAC, AB = AC ⇒ ∠ACB = ∠ABC)
⇒ \(\frac{π}{2}\) - \(\frac{α}{2}\) + 2∠ACB = π
⇒ 2∠ACB = π - \(\frac{π}{2}\) + \(\frac{α}{2}\) = \(\frac{π}{2}\) + \(\frac{α}{2}\) ⇒ ∠ACB = \(\frac{π}{4}\) + \(\frac{α}{4}\)
∴ In ΔBPC, BP = BC
⇒ ∠BPC = ∠BCP = ∠ACB = \(\frac{π}{4}\) + \(\frac{α}{4}\)
Now APC being a straight line,
∠APQ + ∠BPQ + ∠BPC = π
⇒ \(\frac{π}{2}\) - \(\frac{α}{2}\) + 2α - π + \(\frac{π}{4}\) + \(\frac{α}{4}\)= π
⇒ \(\frac{7α}{4}\) = \(\frac{5π}{4}\) ⇒ α = \(\frac{5π}{7}\).