(b) I and III are true

G being the centroid of ΔABC,
\(\frac{AG}{GD}=\frac{BG}{GE}=\frac{CG}{GF}=\frac{2}{1}\)
In ΔABD,
AB + BD > AD
⇒ AB + \(\frac{BC}{2}\) > AD ....(i)
In ΔBEC,
BC + CE > BE ⇒ BC + \(\frac{AC}{2}\) > BE ....(ii)
In ΔAFC,
AC + AF > CF ⇒ AC + \(\frac{AB}{2}\) > CF .....(iii)
Adding (i), (ii) and (iii), we get
AB + BC + AC + \(\frac{BC}{2}\) + \(\frac{AC}{2}\) + \(\frac{AB}{2}\) > AD + BE + CF
⇒ \(\frac{2AB+2BC+2AC+BC+AC+AB}{2}\) > AD + BE + CF
⇒ 3(AB + BC + AC) > 2 (AD + BE + CF) ⇒ I is true Also, in Δ BGC,
BG + GC > BC
\(\big(∵ \frac{BG}{GE}=\frac{2}{1}\) and \(\frac{CG}{GF}=\frac{2}{1}\) ⇒ BG = \(\frac{2}{3}\)BE and CG = \(\frac{2}{3}\)CF\(\big)\)
⇒ \(\frac{2}{3}\) BE + \(\frac{2}{3}\) CF > BC ⇒ 2BE + 2CF > 3BC ....(iv)
Similarly in ΔBGA,
BG + GA > AB
⇒ \(\frac{2}{3}\)BE + \(\frac{2}{3}\)AD > AB ⇒ 2BE + 2AD > 3AB …(v)
In ΔCGA,
CG + GA > AC
⇒ \(\frac{2}{3}\) CF + \(\frac{2}{3}\)AD > AC
⇒ 2CF + 2AD > 3AC ....(vi)
Adding (iii), (iv) and (v), we get
2BE + 2CF + 2BE + 2AD + 2CF + 2AD > 3BC + 3AB + 3AC
⇒ 4(AD + BE + CF) > 3(AB + BC + AC)
⇒ 3(AB + BC + AC) < 4(AD + BE + CF) ⇒ III is true.