(c) AB2 + PQ2

In rt. ∠d ΔACQ,
⇒AC2+ CQ2 = AQ2 ...(i)
In rt. ∠d PCB,
PC2 + CB2 = PB2 ...(ii)
Adding eqn (i) and (ii)
AC2 + CQ2 + PC2 + CB2 = AQ2 + PB2
⇒ (AC2 + CB2) + (CQ2 + PC2) = AQ2 + PB2
AB2 + PQ2 = AQ2 + PB2
⇒ (rt∠d ΔABC)(rt ∠d ΔPQC) (Pythagoras’ Theorem)