Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
+3 votes
324k views
in Mathematics by (31.6k points)
closed by

Write in the simplest form:

tan-1 [ cos x/1+sin x], x[-π/2, π/2]

2 Answers

+3 votes
by (61.2k points)
selected by
 
Best answer

tan-1 [ cos x/1+sin x], x[-π/2, π/2]

+2 votes
by (46.0k points)

tan-1 \(\big[\frac{\cos\,X}{1+\sin\,X}\big]\), x\(\big[\frac{-\pi}{2},\frac{\pi}{2}\big]\)

tan-1\(\big[\frac{\cos\,X}{1+\sin\,X}\big]\)  \(\because\)\(\Bigg\{\begin{matrix} \cos x = \cos^2\frac{x}{2}-\sin^2\frac{x}{2} \\ and\,1+\sin x = \big(\cos\frac{x}{2}+\sin \frac{x}{2}\big)^2 \end{matrix}\)

= tan-1\(\Bigg[\frac{\cos^2\frac{X}{2}-\sin^2\frac{X}{2}}{\big(\cos\frac{X}{2}+\sin\frac{X}{2}\big)^2}\Bigg]\)

= tan-1\(\Bigg[\frac{\big(\cos\frac{X}{2}+\sin \frac{X}{2}\big)\big(\cos\frac{X}{2}-\sin\frac{X}{2}\big)}{\big(\cos \frac{X}{2}+\sin\frac{X}{2}\big)^2}\Bigg]\)

= tan-1\(\Bigg[{\cos\frac{X}{2}-\sin\frac{X}{2} \over\cos\frac{X}{2}+\sin\frac{X}{2}}\Bigg]\) Divide by cos\(\frac{X}{2}\), we get

= tan-1 \(\Bigg[{1-\tan\frac{X}{2} \over 1+\tan\frac{X}{2}}\Bigg]\)

= tan-1\(\Big[\tan\Big(\frac{\pi}{4}-\frac{X}{2}\Big)\Big]\) = \(\frac{\pi}{4}-\frac{X}{2}\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...