Let `f(x)=ax^(2)+bx+c`, `g(x)=ax^(2)+px+q`, where `a`, `b`, `c`, `q`, `p in R` and `b ne p`. If their discriminants are equal and `f(x)=g(x)` has a root `alpha`, then
A. `alpha` will be `A.M.` of the roots of `f(x)=0`, `g(x)=0`
B. `alpha` will be `G.M.` of the roots of `f(x)=0`, `g(x)=0`
C. `alpha` will be `A.M.` of the roots of `f(x)=0` or `g(x)=0`
D. `alpha` will be `G.M.` of the roots of `f(x)=0` or `g(x)=0`