Given: m = 4.0026 u
Z = 2, A = 4
To find: Binding energy per nucleon (\(\bar{B}\) )
Formulae: i. Δm = ZmH + (A – Z)mn – m
ii. B.E. = Δm × 931.4 MeV
iii. \(\bar{B}\) = \(\frac{B.E.}A\)
The mass defect, Δm = [ZmH + (A – Z)mn ] – m Δm = [(2 × 1.0078) + (2 × 1.0087)] – 4.0026 = 0.0304 u
Total binding energy, B.E. (MeV) = Δm (amu) × 931.4
= 0.0304 × 931.4
= 28.315 MeV
iv. B.E. per nucleon, \(\bar{B}\) = \(\frac{B.E.}A\)
\(\bar{B}\) = \(\frac{28.315}4\) = 7.079 Mey/nucleon
Binding energy per nucleon for formation of \(^4_2He\) nucleus = 7.079 MeV/nucleon