(A), (B), (C), (D)
log x2 16 + log2x64 = 3
\(\therefore\frac{log16}{logx^2}+\frac{log64}{log2x}=3\)
∴ 4 log 2 [log x + log 2] + (6 log 2) (2 log x)
= 3 (2 log x) (log 2 + log x)
Let log 2 = a, log x = t. Then
∴ 4at + 4a2 + 12at = 6at + 6t2
∴ 6t2– 10at – 4a2 = 0
∴ 3t2 – 5at – 2a2 = 0
∴ (3t + a) (t – 2a) = 0
∴ t = \(-\frac13\)a, 2a
∴ log x = log(2)-1/3, log(22)
∴ x = 2-1/3, 4
∴ x = \(\frac{1}{\sqrt[3]2},4\)