The correct answer is (b) (frac{u_{i,j+1}-2u_{i,j}+u_{i,j-1}}{(Delta y)^2})
The explanation: To get the second difference,
(u_{i,j+1}+u_{i,j-1}=2 u_{i,j}+(frac{partial^2 u}{partial y^2})_{i,j}(Delta y)^2+⋯)
((frac{partial^2 u}{partial y^2})_{i,j}=frac{u_{i,j+1}-2 u_{i,j}+u_{i,j-1}}{(Delta y)^2} +⋯)
After truncating,
((frac{partial^2 u}{partial y^2})_{i,j}=frac{u_{i,j+1}-2 u_{i,j}+u_{i,j-1}}{(Delta y)^2}).