Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
1.3k views
in Mathematics by (106k points)
closed by
The value of 20C1 + 2 × 20C2 + 3 × 20C3 + … + 20 × 20C20 is
1. 19 × 2020
2. \(20 \times 2^{19}\)
3. 20 × 220
4. 19 × 219

1 Answer

0 votes
by (106k points)
selected by
 
Best answer
Correct Answer - Option 2 : \(20 \times 2^{19}\)

Concept :

We use expansions of (1 + x)and (1 - x) for these types of problems.

Expansion: (1 + x)n = nCn xn + nCn - 1 xn - 1 + nCn - 2 xn - 2 + ...... +nC0.

Calculation :

If we differentiate this expansion on both L.H.S and R.H.S, we get :

⇒ n × (1 + x)n - 1 = n × nCnxn - 1 + (n - 1) × nCn - 1xn - 2 +........ + 0.

If we input x = 1 and n = 20 in the above equation, we get :

⇒ 20 × (1 + 1)20 - 1 = 20 × 20C20 120 - 1 + (20 - 1) × 20C191(20 - 2) + ..... + 0.

⇒ 20 × 219 = 20 × 20C20 + 19 × 20C19 + .... + 1 × 20C1 + 0.

Hence the value of 20C1 + 2 × 20C2 + 3 × 20C3 + … + 20 × 20C20 is 20 × 219.

Whenever a question is asked on Binomial coefficients try differentiating or Integrating expansions of \((1+x)^n \) and \((1-x)^n \) 

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...