Correct Answer - Option 2 :
\(20 \times 2^{19}\)
Concept :
We use expansions of (1 + x)n and (1 - x)n for these types of problems.
Expansion: (1 + x)n = nCn xn + nCn - 1 xn - 1 + nCn - 2 xn - 2 + ...... +nC0.
Calculation :
If we differentiate this expansion on both L.H.S and R.H.S, we get :
⇒ n × (1 + x)n - 1 = n × nCnxn - 1 + (n - 1) × nCn - 1xn - 2 +........ + 0.
If we input x = 1 and n = 20 in the above equation, we get :
⇒ 20 × (1 + 1)20 - 1 = 20 × 20C20 120 - 1 + (20 - 1) × 20C191(20 - 2) + ..... + 0.
⇒ 20 × 219 = 20 × 20C20 + 19 × 20C19 + .... + 1 × 20C1 + 0.
Hence the value of 20C1 + 2 × 20C2 + 3 × 20C3 + … + 20 × 20C20 is 20 × 219.
Whenever a question is asked on Binomial coefficients try differentiating or Integrating expansions of \((1+x)^n \) and \((1-x)^n \)