Correct Answer - Option 4 : Either 4/5 or 5/4
Calculation:
log7 (P + Q) + log7 (P2 – PQ + Q2) = log7 (196 – 7)
⇒ log7 ((P + Q) × (P2 – PQ + Q2)) = log7 (189)
⇒ log7 (P3 + Q3) = log7 189
⇒ P3 + Q3 = 189 ….(1)
log2 P + log2 Q = log2 20
⇒ log2 (P × Q) = log2 20
⇒ P × Q = 20
⇒ P = 20/Q ….(2)
Solving Equation 1 with help of Equation 2
⇒ (20/Q)3 + Q3 = 189
⇒ (8000/Q3) + Q3 = 189
⇒ 8000 + Q6 = 189Q3
⇒ Q6 - 189Q3 + 8000 = 0
Let, Q3 = X
⇒ X2 – 189X + 8000
⇒ X = 64 or 125 both are right
Solving the equation,
⇒ Q = 5 and P = 4 or Q = 4 and P = 4
∴ P/Q = 4/5 or 5/4
log (X) + log (Y) = log (X × Y) (This holds true only when bases of log under consideration are the same)