Correct Answer - Option 2 : 84
Calculation:
(log2 (A + B) + log2 (A + B))/2 = 1 + log2 (7)
⇒ log2 ((A + B) × (A + B))/2 = log2 (2) + log2 (7)
⇒ log2 (A + B) 2 = 2 × log2 (2 × 7)
⇒ log2 (A + B) 2 = log2 (142)
⇒ (A + B) 2 = 142
⇒ (A + B) 2 = 196 ….(1)
log7 (A) – log7 (B) = log7 (5) – log7 (2)
⇒ log7 (A/ B) = log7 (5/ 2)
⇒ A/ B = 5 / 2
⇒ A = 5 × B/ 2 ….(2)
Solving Equation (1) using Equation (2)
⇒ ((5 × B/2) + B) 2 = 196
⇒ ((5 × B/2) + B) = 14
⇒ 7 B = 28
⇒ B = 4 and A = 10
⇒ A2 – B2 = 100 – 16
∴ Required answer is 84
x log (y) = log (yx)
log (a) - log (b) = log (a/b) (This condition holds true only when bases of log under consideration are same)