Correct Answer - Option 1 : 0
Concept:
According to the divergence theorem,
\(\mathop{\iint }_{S}^{{}}\bar{F}\cdot \hat{n}~~ds=\iiint_{V}{\nabla \cdot \bar{F}~~dV}\)
In expanded form,
\(\mathop{\iint }_{S}^{{}} {F_xdydz}+{F_ydzdx}+{F_zdydx} =\iiint_{V}({\frac{\partial F_x}{\partial x}+\frac{\partial F_y}{\partial y}+\frac{\partial F_z}{\partial z}) dxdydz}\)
Calculation:
Given Fx = yz, Fy = zx, Fz = xy;
Substituting in the theorem,
\(⇒ I = \iiint_{V}({\frac{\partial (yz)}{\partial x}+\frac{\partial (zx)}{\partial y}+\frac{\partial (xy)}{\partial z}) dxdydz}\)
\(⇒ I = \iiint_{V} {0 \; dxdydz}\)
⇒ I = 0