Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
395 views
in Calculus by (115k points)
closed by
For the spherical surface x2 + y2 + z2 – 1, the unit outward normal vector at the point \(\left( {\frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }},0} \right)\) is given by
1. \(\frac{1}{{\sqrt 2 }}\hat i + \frac{1}{{\sqrt 2 }}\hat j\;\)
2. \(\frac{1}{{\sqrt 2 }}\hat i - \frac{1}{{\sqrt 2 }}\hat j\)
3. \(\hat k\)
4. \(\frac{1}{{\sqrt 3 }}\hat i + \frac{1}{{\sqrt 3 }}\hat j + \frac{1}{{\sqrt 3 }}\hat k\)

1 Answer

0 votes
by (152k points)
selected by
 
Best answer
Correct Answer - Option 1 : \(\frac{1}{{\sqrt 2 }}\hat i + \frac{1}{{\sqrt 2 }}\hat j\;\)

Concept:

The gradient of a scalar function f(x,y,z) is given by:

\({\rm{grad\;f}} = \frac{{\partial {\rm{f}}}}{{\partial {\rm{x}}}}{\rm{\hat i}} + {\rm{\;}}\frac{{\partial {\rm{f}}}}{{\partial {\rm{y}}}}{\rm{\hat j}} + \frac{{\partial {\rm{f}}}}{{\partial {\rm{x}}}}{\rm{\hat k}}\)

Unit outward normal vector of a function f at a point P is given by:

\({\bf{\vec n}} = \frac{{{{\left( {{\bf{grad}}\;{\bf{f}}} \right)}_{{\bf{at}}\;{\bf{p}}}}}}{{\left| {{\bf{grad}}\;{\bf{f}}} \right|}}\)

Calculation:

Given:

Spherical surface x2 + y2 + z2 = 1, point P is \(\left( {\frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }},0} \right)\)

F(x,y,z) = x2 + y2 + z2 – 1 = 0

\({\rm{grad\;f}} = \frac{{\partial {\rm{f}}}}{{\partial {\rm{x}}}}{\rm{\hat i}} + {\rm{\;}}\frac{{\partial {\rm{f}}}}{{\partial {\rm{y}}}}{\rm{\hat j}} + \frac{{\partial {\rm{f}}}}{{\partial {\rm{x}}}}{\rm{\hat k}} = 2{\bf{x\hat i}} + 2{\bf{y\hat j}} + 2{\bf{z\hat k}}\)

(grad f)at P\(\frac{2}{{\sqrt 2 }}{\rm{\hat i}} + \frac{2}{{\sqrt 2 }}{\rm{\hat j}} + 0{\rm{\hat k}} = \sqrt 2 {\rm{\hat i}} + \sqrt 2 {\rm{\hat j}} + 0{\rm{\hat k}}\)

\(\left| {{\rm{grad\;f}}} \right| = \sqrt {2 + 2} = \sqrt 4 = 2\)

Unit outward normal vector of function f at point P is given by:

\(\vec n = \frac{{{{\left( {{\rm{grad\;f}}} \right)}_{{\rm{at\;p}}}}}}{{\left| {{\rm{grad\;f}}} \right|}} = \frac{{\sqrt 2 {\rm{\hat i}} + \sqrt 2 {\rm{\hat j}}}}{2} = \frac{1}{{\sqrt 2 }}{\bf{\hat i}} + \frac{1}{{\sqrt 2 }}{\bf{\hat j}}\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...