Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
129 views
in Calculus by (101k points)
closed by
The value of the integral \(I = \mathop \smallint \limits_0^1 {x^2}{e^x}dx\) is
1. xex
2. 4e - 2
3. e - 2
4. e + 4

1 Answer

0 votes
by (108k points)
selected by
 
Best answer
Correct Answer - Option 3 : e - 2

Concept:

Integration by parts

when u and v are functions of x.

\(\smallint u\times v~dx = u\smallint vdx - \smallint \left[ {\frac{{du}}{{dx}}\smallint vdx} \right]dx\)

Integral of standard function 

\(\smallint e^{{ax}} dx=\frac{{e^{ax}}}{{a}}\)

Derivative of standard function

\(\frac{{d}}{{dx}}(x^n)=nx^{n-1}\)

Calculation:

\(I = \mathop \smallint \limits_0^1 {x^2}{e^x}dx\)

Using integration by parts where, u = x2 and v= ex

\(I= {x^2}\mathop \smallint {e^x}dx - \smallint \left[ {\frac{d}{{dx}}{x^2}\smallint {e^x}dx} \right]dx\)

\(I = {x^2}{e^x} - \smallint \left[ {2x\times {e^x}} \right]dx\)

Again using integration by parts in \(\smallint {2x\times {e^x}} dx\)  where, u = 2x and v = ex

\(I = {x^2}{e^x} - \left( {2x\smallint {e^x}dx - \smallint \left[ {\frac{d}{{\;dx}}2x\smallint {e^x}dx} \right]dx} \right)\)

\(I = {x^2}{e^x} - (2x{e^x} - \smallint 2{e^x}dx)\)

\(I = \left. {\left( {{x^2}{e^x} - 2x{e^x} + 2{e^x}} \right)} \right|_0^1\)

\(I = \left( {{{\left( 1 \right)}^2}{e^{\left( 1 \right)}} - 2\left( 1 \right){e^{\left( 1 \right)}} + 2{e^{\left( 1 \right)}}} \right) - \left( {{{\left( 0 \right)}^2}{e^{\left( 0 \right)}} - 2\left( 0 \right){e^{\left( 0 \right)}} + 2{e^{\left( 0 \right)}}} \right)\)

\(I = \left( {e - 2e + 2e} \right) - \left( {0 - 0 + 2} \right)\)

\(I = e - 2\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...