Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
85 views
in Calculus by (101k points)
closed by
For i = \(\sqrt {{-1}}\) , the value of the integral \(I = \mathop \smallint \limits_0^{\pi /2} \frac{{\cos 3x + i\sin 3x}}{{\sin 2x + i\cos 2x}}dx\) is
1. \(\frac{{-1}}{{5}}(-1+i)\)
2. \(\frac{{1}}{{5}}(1+i)\)
3. \(\frac{{1}}{{5}}(-1-i)\)
4. \(\sqrt\pi/5\)

1 Answer

0 votes
by (108k points)
selected by
 
Best answer
Correct Answer - Option 1 : \(\frac{{-1}}{{5}}(-1+i)\)

Concept:

cos (nθ) + (i × sin (nθ)) = einθ 

sin (nθ) + (i × cos (nθ)) = i × e-inθ

Multiplication of imaginary numbers

i × i = -1 

-i × i = 1

 \({1\over i}=-i\)

Integaration of standard functions

\(\int \sin ax=\frac{{-\cos ax}}{{a}}\)

\(\int \cos ax=\frac{{\sin ax}}{{a}}\)

Calculation:

Given:

\(I = \mathop \smallint \limits_0^{\pi /2} \frac{{\cos 3x + i\sin 3x}}{{\sin 2x + i\cos 2x}}dx\)

We know that 

cos (nθ) + (i × sin (nθ)) = einθ 

sin (nθ) + (i × cos (nθ)) = i × e-inθ

\(I = \mathop \smallint \limits_0^{\pi /2} \frac{{\cos 3x + i\sin 3x}}{{\sin 2x + i\cos 2x}}dx\)

\(I = \mathop \smallint \limits_0^{\pi /2} \frac{{e^{i3x}}}{{e^{-i2x}}}dx\)

\(I = \mathop \smallint \limits_0^{\pi /2} \frac{{e^{i5x}}}{{i}}dx\)

Multiply and divide by i

\(I =- \mathop \smallint \limits_0^{\pi /2} i× e^{i5x}dx\)

\(I = -i\mathop \smallint \limits_0^{\pi /2} e^{i5x}dx\)

Repacing einθ = cos (nθ) + (i × sin (nθ))  

\(I =-i \mathop \smallint \limits_0^{\pi /2}\cos 5x+(i× \sin 5x) dx\)

\(I =-i [\frac{{\sin5x}}{{5}}-i\frac{{\cos5x}}{{5}}]_0^{\frac{{\pi}}{{2}}}\)

\(I=-\frac{{i}}{{5}}[\sin5x-i× cos5x]_o^{\frac{{\pi}}{{2}}}\)

\(I=-\frac{{i}}{{5}}[(1-0)(0-i)]\)

\(I=-\frac{{i}}{{5}}[1+i]\)

\(I=\frac{{1}}{{5}}[1-i]=-\frac{{1}}{{5}}[-1+i]\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...