Correct Answer - Option 1 : 11.4% low
Concept:
Reactive power in a shunt inductor is given by,
\(Q = \frac{{{V^2}}}{{{X_L}}} = \frac{{{V^2}}}{{2\pi fL}}\)
\(\frac{{{Q_2}}}{{{Q_1}}} = {\left( {\frac{{{V_2}}}{{{V_1}}}} \right)^2} \times \left( {\frac{{{f_1}}}{{{f_2}}}} \right)\)
Calculation:
\({Q_2} = Q_{1}{\left[ {\frac{{0.96{V_1}}}{{{V_1}}}} \right]^2}\left[ {\frac{{{f_1}}}{{1.04{f_1}}}} \right]\)
= 0.886Q1 = 88.62 Q1
Therefore, the reactive power consumed is 11.38% low.