Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
159 views
in Mathematics by (108k points)
closed by

Which one of the following propositional logic formulas is TRUE when exactly two of p, q, and r are TRUE?


1. \(\left( {\left( {p \leftrightarrow q} \right) \wedge r} \right) \vee \left( {p \wedge q \wedge \sim r} \right)\)
2. \(\left( { \sim \left( {p \leftrightarrow q} \right) \wedge r} \right) \vee \left( {p \wedge q \wedge \sim r} \right)\)
3. \(\left( {\left( {p \to q} \right) \wedge r} \right) \vee \left( {p \wedge q \wedge \sim r} \right)\)
4. \(\left( { \sim \left( {p \leftrightarrow q} \right) \wedge r} \right) \wedge \left( {p \wedge q \wedge \sim r} \right)\)

1 Answer

0 votes
by (101k points)
selected by
 
Best answer
Correct Answer - Option 2 : \(\left( { \sim \left( {p \leftrightarrow q} \right) \wedge r} \right) \vee \left( {p \wedge q \wedge \sim r} \right)\)

Truth table: P → Q

p

q

p → q

F

F

T

F

T

F

F

T

T

T

T

T

 

Truth table: P ↔ Q

p

q

p ↔ q

F

F

T

F

T

F

T

F

F

T

T

T

 

Option 1

\(\left( {\left( {{\rm{p}} \leftrightarrow {\rm{q}}} \right) \wedge {\rm{r}}} \right) \vee \left( {{\rm{p}} \wedge {\rm{q}} \wedge \sim {\rm{r}}} \right)\)

\({\rm{Taking\;p}} = {\rm{T\;and\;q}} = {\rm{T}},{\rm{\;\;}}\left( {\left( {{\rm{T}} \leftrightarrow {\rm{T}}} \right) \wedge {\rm{r}}} \right) \vee \left( {{\rm{T}} \wedge {\rm{T}} \wedge \sim {\rm{r}}} \right)\)

\( = \left( {\left( {\rm{T}} \right) \wedge {\rm{r}}} \right) \vee \left( {{\rm{T}} \wedge \sim {\rm{r}}} \right)\)

\(= \left( {\rm{r}} \right) \vee \left( { \sim {\rm{r}}} \right)\)

\(= {\rm{T}}\)

The truth evaluation of Option_1 doesn’t depend on the value of r. If the value of r is True (T), then also this function will evaluate to T. Hence, it becomes the condition of AT LEAST TWO an fails for the condition of Exactly Two.

Option_2

\(\left( {\sim \left( {p \leftrightarrow q} \right) \wedge r} \right) \vee \left( {p \wedge q \wedge \sim r} \right)\)

 \(= taking\;p = T\;and\;q = T,\;\;\left( {\sim \left( {T \leftrightarrow T} \right) \wedge r} \right) \vee \left( {T \wedge T \wedge \sim r} \right)\)

\(= \left( {\sim \left( T \right) \wedge r} \right) \vee \left( {T \wedge \sim r} \right)\)

\(= \left( {\sim\left( T \right) \wedge r} \right) \vee \left( {T \wedge \sim r} \right)\)

\( = \left( {F \wedge r} \right) \vee \left( {T \wedge \sim r} \right)\)

\(= \left( F \right) \vee \left( { \sim r} \right)\)

\(= \sim r\)

If r = F, then the output = T

else output = F.

Hence, Option_2 evaluates to T only when exactly p and q are True and r is necessarily False.

The same can be tried with keeping p and r as T OR q and r as T initially.

Option_3

\(\left( {\left( {p \to q} \right) \wedge r} \right) \vee \left( {p \wedge q \wedge \sim r} \right)\)

\(= taking\;p = T\;and\;q = T,\;\;\left( {\left( {T \to T} \right) \wedge r} \right) \vee \left( {T \wedge T \wedge \sim r} \right)\)

\(= \left( {\left( T \right) \wedge r} \right) \vee \left( {T \wedge \sim r} \right)\)

\(= \left( r \right) \vee \left( { \sim r} \right)\)

\(= T\)

The evaluation of final output does not depend on the value of r. Hence, the condition of EXACTLY TWO variables as T fails.

Option_4

\(\left( { \sim \left( {p \leftrightarrow q} \right) \wedge r} \right) \wedge \left( {p \wedge q \wedge \sim r} \right)\)

\(= taking\;p = T\;and\;q = T,\;\;\left( {\sim\left( {T \leftrightarrow T} \right) \wedge r} \right) \wedge \left( {T \wedge T \wedge \sim r} \right)\)

\(= \left( {\sim \left( T \right) \wedge r} \right) \wedge \left( {T \wedge \sim r} \right)\)

\(= \left( {F \wedge r} \right) \wedge \left( {T \wedge \sim r} \right)\)

\(= \left( F \right) \wedge \left( { \sim r} \right)\)

\(= F\)

The expression evaluates to F with r = T and also with r = F. Hence, with at least two variables as T, this evaluates to F.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...