Correct Answer - Option 4 : S
1 is a tautology but S
2 is not a tautology.
Data:
¬ ≡ NOT ≡ ̅
OR ≡ ∨ ≡ +
AND ≡ ∧ ≡ .
Formula:
a → b ≡ a̅ + b
Calculation:
S1 : (¬p ∧ (p ∨ q)) → q
S1 ≡ (p̅.(p + q) → q
S1 ≡ (p̅.p + p̅.q) → q
S1 ≡ (p̅.q) → q
S1 ≡ \(\overline{\overline p.q} + q\)
S1 ≡ p + q̅ + q ≡ p + 1 ≡ 1
S1 is a tautology
S2 ≡ q → (¬p ∧ (p ∨ q))
S2 ≡ q → (p̅.(p + q))
S2 ≡ q̅ + (p̅.p + p̅.q))
S2 ≡ q̅ + p̅.q ≡ p̅ + q̅
S2 is not a tautology.
Therefore option 4 is correct