Correct Answer - Option 3 : S2 and S3
∀x [(∀z z|x ⇒ ((z=x) ∨ (z=1))) ⇒ ∃w (w > x) ∧ (∀z z|w ⇒((w=z) V (z=1)))]
Let, X ≡ (∀z z|x ⇒ ((z =x) ∨ (z=1)))
Y ≡ ∃w (w > x)
Z ≡ (∀z z|w ⇒ ((w = z) ∨ (z=1))
∀x [X ⇒ Y ⇒ Z]
X is true: If x is prime number
Y is true: If there exist a w which is greater than x
Z is true. If w is prime
S1 = {1,2,3, ... , 100}
Let x = 97
z = 97
∴ z|x ⇒ (z = 1) ≡ T ⇒ T ≡ T
prime number greater than 97 is 101
But S1 is not included in set. Hence there doesn’t exist w which is greater than x
T ⇒ F.Z ≡ T ⇒ F ≡ F
Therefore, S1 does not satisfy φ
S2. Set of all positive integers satisfy φ
S3. Set of all integers
If x is negative, X ≡ T
F ⇒ Y.Z ≡ T
Also, set of all positive integers satisfy φ
Therefore, option 3 is correct.