Correct Answer - Option 3 : Subcritical
Concept:
The Froude number is given by,
\({{\rm{F}}_{\rm{r}}}{\rm{ = }}\frac{{\rm{V}}}{{\sqrt {{\rm{gD}}} }}\)
Where,
V = Velocity of water, D = Y = Hydraulic depth = A/T
T = Top width of the channel
Fr = 1 → Critical flow
Fr < 1 → Subcritical flow or Tranquil flow
Fr > 1 → Supercritical flow or Shooting or Torrential flow
Calculation:
Given: Q = 17 m3/sec, Y = 1.5 m, B = 6 m
A = (1/2) × (6 + 12) × 1.5 = 13.5 m2
\({{\rm{F}}_{\rm{r}}}{\rm{ = }}\frac{{\rm{V}}}{{\sqrt {{\rm{gD}}} }}\)
Where,
V = Q/A, D = A/T
\(∴ {{\rm{F}}_{\rm{r}}}^2{\rm{ = }}\frac{{\rm{Q^2T}}}{{{{\rm{gA^3}}} }}\)
\(∴ {{\rm{F}}_{\rm{r}}}^2{\rm{ = }}\frac{{\rm{{(17)}^2× 12}}}{{{{\rm{9.81× {(13.5)}^3}}} }}=0.1436\)
∴ Fr = 0.379 < 1
Hence the flow is Subcritical