Correct Answer - Option 4 : 8000 m
Concept:
\({h_f} = \frac{{fL{V^2}}}{{2gD}} = \frac{{fL{Q^2}}}{{12{d^5}}}\)
∵ Q1 = Q2 & \({h_{{f_1}}} = {h_{{f_2}}}\)
\(\therefore \frac{{{f_1}{L_1}}}{{d_1^5}} = \frac{{{f_2}{L_2}}}{{d_2^5}}\)
Calculation:
\(\therefore \frac{{{f_1}{L_1}}}{{d_1^5}} = \frac{{{f_2}{L_2}}}{{d_2^5}}\)
\(\frac{{0.015 \times 200}}{{{{\left( {.2} \right)}^5}}} = \frac{{0.012 \times L}}{{{{\left( {.4} \right)}^5}}}\)
∴ L = 8000 m