Correct Answer - Option 3 : 2.4 g
Calculation:
Molecules of benzoic acid dimerise in benzene as:
2(C6H5COOH) ⇌ (C6H5COOH)2
Now, we know that depression in freezing point (∆Tf) is given by following equation:
\(\Delta {T_f} = i \times {K_f} \times m = \frac{{i \times {K_f} \times {w_{{\rm{solute\;}}}} \times 1000}}{{M{w_{{\rm{solute\;}}}} \times {w_{{\rm{solvent\;}}}}}}\) ----(1)
Given, wsolute (benzoic acid) = wg
wsolvent (benzene) = 30g
Mwsolute (benzoic acid) = 122gmol-1, ΔTf = 2K
Kf = 5 Kkg mol-1, α = 80 or α = 0.8
2(C6H5COOH) ⇌ (C6H5COOH)2
Initial 1 0
Final 1 – α α/2
=1-0.8 0. 8/2=0.4
= 0.2
Total number of moles at equilibrium
= 0.2 + 0.4 = 0.6
\(i = \frac{{{\rm{\;Number\;of\;moles\;at\;equilibrium\;}}}}{{{\rm{\;Number\;of\;moles\;present\;initially\;}}}}\)
\(i = \frac{{0.6}}{1} = 0.6\)
On substituting all the given values in Eq.(1), we get
\(2 = \frac{{0.6 \times 5 \times w \times 1000}}{{122 \times 30}}\) , w = 2.44 g
Thus,
weight of acid (w) is 2.4 g.